1: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA
Xét (O) co
ΔAMB nội tiếp
AB là đường kính
Do đo: ΔAMB vuông tại M
=>ΔAMK vuông tại M
CM=CA
=>góc CMA=góc CAM
=>90 độ-góc CMA=90 độ-góc CAM
=>góc CMK=góc CKM
=>CK=CM=CA
1: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA
Xét (O) co
ΔAMB nội tiếp
AB là đường kính
Do đo: ΔAMB vuông tại M
=>ΔAMK vuông tại M
CM=CA
=>góc CMA=góc CAM
=>90 độ-góc CMA=90 độ-góc CAM
=>góc CMK=góc CKM
=>CK=CM=CA
Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
Cho đường tròn (O;R), dây MN khác đường kính. Hai tiếp tuyến của đường tròn (O;R) tại M và N cắt nhau tại K. Kẻ đường kính NI, kẻ MH vuông góc với NI tại H. a) chứng minh OK vuông góc với ON b) chứng minh ON là phân giác góc HMK c) gọi Q là giao điểm của KI và MH. Chứng minh QH = QM
ừ điểm A nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O)
(B, C là 2 tiếp điểm).
a) Chứng minh: Bốn điểm O, B, A, C cùng thuộc 1 đường tròn và BC OA tại H.
b) Kẻ đường kính BD của đường tròn (O). Qua C vẽ đường thẳng vuông góc với AB,
đường thẳng này cắt OA tại E. Chứng minh: CD // OA và tứ giác OBEC là hình thoi.
c) Qua E vẽ đường thẳng a bất kỳ cắt đoạn thẳng AC. Lần lượt vẽ OM, DN, CP vuông
góc với đường thẳng a tại M, N, P. Chứng minh: DN = OM + CP.
Bài 14: Cho đường tròn (O;R) Lấy M cách O một khoảng cách = 2R. Từ M kẻ các tiếp tuyến MA và MB với đường tròn (A và B là các tiếp điểm). Đoạn thẳng OM cắt đường tròn (O) tại C. Đường Thẳng qua O và vuông góc với OB cắt OA tại D. Đường thẳng DC cắt MB tại điểm E.
a) Chứng minh Tam giác MAB là Tam giác đều
b) Chứng minh rằng Tam giác DMO cân tại D
c) Chứng minh rằng DE là tiếp tuyến của đường tròn (O)
cho đường tròn tâm o bán kính R và dây AB khác đường kính, qua O kẻ đường thẳng vuông góc với Ab tại H và đường thẳng này cắt tiếp tuyến tại A của đường tròn tại M
a) C/M MB là tiếp tuyến củ đường tròn tâm O
b) biết R=15cm; Ab=24cm. tính Om
c) kẻ cát tuyến MCD ( C nằm giữa Mvaf D) . gọi I là giao điểm CD, tia OI cắt tiếp tuyến tại C của đường tòn tai điểm K. C/M OI.OK=OM.OM và ba điểm A,B,K thẳng hàng
Cho đường tròn (O) và đường thẳng (d) cắt đường tròn (O) tại hai điểm M; N ( đường thẳng (d) không đi qua O). Lấy điểm A thuộc đường thẳng (d) (A nằm ngoài đường tròn). Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là tiếp điểm).a) Chứng minh đường tròn ngoại tiếp tam giác ABC luôn đi qua hai điểm cố định khi A di chuyển trên (d).b) Kẻ tiếp tuyến tại M và N của đường tròn (O) cắt nhau tại P. Chứng minh B; C; P thẳng hàng.c) Kẻ đường kính BOD, đường thẳng qua O vuông góc với BD cắt CD tại E. Chứng minh AOCE là hình thang cân