Cho (O) đường kính AB, M là điểm chính giữa của cung AB, C là điểm bất kì thuộc cung AB sak cho C và M nằm khác phía so với AB, CM cắt AB tại D. Vẽ dây AE vuông góc với CM tại Fa/ Chứng minh ACEM là hình thang cânb/Vẽ CH vuông góc với AB. Chứng minh CH là tia phân giác góc CHO
Cho nửa đường tròn (O) đường kính Ae. Gọi B, C, D là 3 điểm trên nửa đường tròn sao cho \(\stackrel\frown{AC}=2\stackrel\frown{AB},\stackrel\frown{AD}=3\stackrel\frown{AB}\)
a, Chứng minh M là điểm chính giữa của \(\stackrel\frown{AD}và\stackrel\frown{BC}\) ( OM ⊥ AD)
b, Tứ giác ABCD là hình gì? Vì sao?
Cho tam giác ABC vuông tại A, M là một điểm trên AC. Đường tròn đường kính CM cắt BM và BC lần lượt tại D và N; AD cắt đường tròn tại S. Chứng minh rằng:
a) A, B, C, D cùng thuộc một đường tròn.
b) CA là phân giác góc SCB.
c) Các đường AB, MN, CD đồng quy.
GIÚP MÌNH VỚI MAI MÌNH THI RÙIIII![]()
cho nửa đường tròn (O) có đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A,B).Lấy điểm M thuộc dây BC(M khác B,C) .Tia AM cắt cung nhỏ BC tại điểm N,tia AC cắt BN tại điểm P.Cm:PCMN là tứ giác nội tiếp
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O các đường cao AM , BN cho tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại D và E Chứng minh A, tứ giác MHNC nội tiếp đường tròn B, CD = CE C, CB là tia phân giác của góc HCD
Cho đường tròn tâm O đường kính AB và S là một điểm nằm ngoài đường tròn. Vẽ đường thẳng SA và SB lần lượt cắt (O) tại điểm thứ hai M,N. Gọi H là giao điểm của AN và BM. Chứng minh rằng 1) SH ⊥ AB 2) HM . HB = HN . HA
Cho tam giác cân ABC (AB = AC) nội tiếp đường tròn (O). Các đường phân giác của hai góc B và C cắt nhau ở E và cắt đường tròn lần lượt ở F và D. Chứng minh rằng tứ giác EDAF là một hình thoi ?