a) Xét (O) có
AM là tiếp tuyến có M là tiếp điểm(gt)
AN là tiếp tuyến có N là tiếp điểm(gt)
Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AM=AN(cmt)
nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OM=ON(cmt)
nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(đpcm)
b) Xét (O) có
ΔMNC nội tiếp đường tròn(C,M,N∈(O))
NC là đường kính
Do đó: ΔMNC vuông tại M(Định lí)
⇒MN⊥MC
Ta có: MN⊥MC(cmt)
MN⊥AO(cmt)
Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)
c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:
\(OA^2=OM^2+MA^2\)
\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)
hay \(AM=\sqrt{16}=4cm\)
mà AM=AN(cmt)
nên AN=4cm
Gọi H là giao điểm của MN và AO
mà MN⊥AO tại trung điểm của MN
nên H là trung điểm của MN và MH⊥AO tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:
\(MH\cdot AO=MO\cdot MA\)
\(\Leftrightarrow MH\cdot5=4\cdot3=12\)
hay MH=2,4cm
mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)
nên \(MN=2\cdot2.4=4.8cm\)
Chu vi tam giác AMN là:
\(C=AM+AN+MN=5+5+4.8=14.8cm\)