Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tam Nguyen Duc

Cho đường tròn (O) có dây cung BC cố định. Gọi M là điểm chính giữa cung nhỏ BC, điểm A nằm trên cung lớn BC sao cho AC≥AB. Đường AM cắt tiếp tuyến tại C của (O) tại H, cắt BC tại I. Đường thẳng AB cắt CM tại K.

1, Chứng minh tứ giác ACHK nội tiếp

2, Chứng minh HK // BC và AB.AC= IB.IC + IA^2

Mọi người giúp mình ý 2 với ạ. Mình cảm ơn

nam trần
19 tháng 4 2020 lúc 9:03

a,

xét (o) ta có : cung BA bằng cung AC (A là điểm chính giửa cung nhỏ BC)

BMA là góc nội tiếp chắng cung BA

ACQ là góc tạo bởi tia tiếp tuyến và dây chắng cung AC

mà cung BA bằng cung AC (chứng minh trên)

BMA = ACQ

PMQ = PCQ

xét tứ giác PQCM ta có :

PMQ = PCQ (chứng minh trên)

mà PMQ và PCQ là 2 góc kề nhau cùng chắng cung PQ của tứ giác PQCM

tứ giác PQCM là tứ giác nội tiếp (đpcm)

b,

xét (o) ta có : BMA = BCA (2 góc nội tiếp cùng chắng cung AB)

xét đường tròn ngoại tiếp tứ giác PQCM ta có :

CPQ = CMQ

CPQ = AMC

mà BMA = AMC (cung AB bằng cung AC)

BCA = CPQ

mà 2 góc này ở vị trí so le

PQ // BC (đpcm)


Các câu hỏi tương tự
ngọc linh
Xem chi tiết
Thiên Thương Lãnh Chu
Xem chi tiết
Doãn Hoài Trang
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
nguyen thi hoa trinh
Xem chi tiết
quangduy
Xem chi tiết
Phạm Duy Phát
Xem chi tiết
yoo rachel
Xem chi tiết
nguyen ngoc son
Xem chi tiết