Ôn tập chương 2: Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hương

 Cho đường thẳng (d): y = mx - m + 1 và parabol (P): y = x^2

a) Tìm m để (d) cắt (P) tại hai điểm phân biệt

b) Gọi x1, x2 là hoành độ các giao điểm, tìm m sao cho undefined

Nguyễn Việt Lâm
24 tháng 2 2021 lúc 18:54

Pt hoành độ giao điểm:

\(x^2-mx+m-1=0\)

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

\(\left\{{}\begin{matrix}\left|x_1\right|=x_2\Rightarrow x_2\ge0\\x_2>x_1\end{matrix}\right.\) \(\Rightarrow x_2=-x_1>0\)

\(\Leftrightarrow x_1+x_2=0\)

\(\Rightarrow m=0\)

Nguyễn Lê Phước Thịnh
24 tháng 2 2021 lúc 20:40

a) Phương trình hoành độ giao điểm: 

\(x^2=mx-m+1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m-2\ne0\)

hay \(m\ne2\)

Vậy: Để (d) cắt (P) tại hai điểm phân biệt thì \(m\ne2\)


Các câu hỏi tương tự
James Pham
Xem chi tiết
Nguyễn Gia Huy
Xem chi tiết
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
Tuấn Anh Vũ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hoàng Mạnh Cường
Xem chi tiết
Nguyễn Gia Huy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Chà Chanh
Xem chi tiết