Cho tam giác ABC có tâm đường tròn nội tiếp I, các đường cao của tam giác là \(h_a,h_b,h_c\).
a) Tìm tập hợp những điểm M thỏa mãn \(\left(\overrightarrow{MA}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MB}-\overrightarrow{MA}\right)=0\)
b) Điểm K thỏa mãn \(\dfrac{\overrightarrow{KA}}{h_a}+\dfrac{\overrightarrow{KB}}{h_b}+\dfrac{\overrightarrow{KC}}{h_c}=\overrightarrow{IA}\). Chứng minh rằng : K, I, A thẳng hàng.
cho tứ giác ABCD có A, B cố định, C,D chạy trên đường thẳng delta sao cho CD=a > 0. xác định D sao cho\(\left|\overrightarrow{AD}\right|+\left|\overrightarrow{BC}\right|\) nhỏ nhất
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O; R). Tìm tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}=3a^2\)
Cho hcn ABCD có AB = 2AD, BC = a. Tính Min của độ dài vec tơ \(\overrightarrow{u}=\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\), trong đó M là điểm thay đổi trên đường thẳng BC
Cho tam giác ABC nội tiếp (O ; R). Gọi E là trung điểm của AB và F là điểm thỏa mãn \(\overrightarrow{AC}=3\overrightarrow{AF}\). Vẽ hình bình hành AEMF. Biểu diễn giá trị nhỏ nhất của P theo R
P = (MA + MB + MC)2 + 11OM2
Cho ba điểm A, B, C không thẳng hàng và đường thẳng d. Điểm M \(\in\) d sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) có giá trị nhỏ nhất. Chọn câu khẳng định đúng trong các khẳng định sau?
A. Có hai điểm M thỏa mãn bài toán. Là hình chiếu vuông góc của trọng tâm tam giác ABC lên đường thẳng d và điểm đối xứng của trọng tâm tam giác ABC qua d.
B. Có duy nhất điểm M thỏa mãn bài toán. Điểm M là hình chiếu vuông góc của trọng tâm tam giác ABC lên đường thẳng d.
C. Có vô số điểm M thỏa mãn bài toán, phụ thuộc vào vị trí của A, B, C so với đường thẳng d.
D. Nếu có hai điểm trong ba điểm A, B, C nằm trên đường thẳng d thì tồn tại vô số điểm M thỏa mãn bài toán
Trên hệ trục tọa độ Oxy, cho hình vuông ABCD. Gọi M là 1 điểm thuộc đoạn thẳng CD sao cho \(\overrightarrow{MC}=2.\overrightarrow{DM}\). Gọi N là trung điểm của đoạn thẳng BC và tọa độ của N là: \(N\left(0;2019\right)\).
Gọi K là giao điểm của 2 đường thẳng AM và BD. Biết đường thẳng AM có phương trình là : \(x-10y+2018=0\). Tính khoảng cách từ gốc tọa độ O đến đường thẳng NK ?
P/s: Em xin phép nhờ quý thầy cô và các bạn giúp đỡ bài toán trong đề cương của trường THPT Việt Nam -- Ba Lan ( Thành phố Hà Nội )
Cho tam giác ABC có trực tâm H. CMR: \(\tan A.\overrightarrow{MA}+\tan B.\overrightarrow{MB}+\tan C.\overrightarrow{MC}=\overrightarrow{0}\)
Cho tam giác ABC, M là 1 điểm trong tam giác ABC. Đường thẳng AM cắt BC tại D, BM cắt CA tại E, CM cắt AB tại F. CMR nếu \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\) thì M là trọng tâm tam giác ABC.
Cho tam giác ABC, M là 1 điểm bất kì thuộc miền trong của tam giác. Gọi \(S_a,S_b,S_c\)lần lượt là diện tích các tam giác MBC, MCA, MAB. CMR: \(S_a.\overrightarrow{MA}+S_b.\overrightarrow{MB}+S_c.\overrightarrow{MC}=\overrightarrow{0}\)