Gọi điểm cố định mà (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow\left(m+2\right)x_0+\left(m-3\right)y_0-m+8=0\\ \Leftrightarrow mx_0+2x_0+my_0-3y_0-m+8=0\\ \Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=1\\2x_0-3y_0=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(-1;2\right)\)
Vậy (d) luôn đi qua \(A\left(-1;2\right)\left(đpcm\right)\)