Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng thị kim Huế

Cho đt tâm O đường kính AB cố định. Điểm M di động trên (O) sao cho M không trùng với các điểm A và B. Lấy điểm C là điểm đối xứng của O qua A. Đt vuông góc với AB tại C cắt đt AM tại N. Đt BN cắt (O) tại điểm thứ 2 E. BM cắt CN tại F. Chứng minh: A là trọng tâm tam giác BNF khi và chỉ khi NF ngắn nhất

 

Huân Bùi
24 tháng 2 2021 lúc 15:47

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA 

Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).


Các câu hỏi tương tự
Phương Uyên
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Phương Uyên
Xem chi tiết
Etermintrude💫
Xem chi tiết
Nguyễn Duy Khánh
Xem chi tiết
Thư Minh
Xem chi tiết
Nhỏ Dâu Tây
Xem chi tiết
cao lâm
Xem chi tiết
illumina
Xem chi tiết