Đường thẳng d ở đây để làm gì nhỉ?
Theo định lý đường xiên - đường vuông góc ta có \(d\left(O;\Delta\right)\le OA\)
Dấu "=" xảy ra khi d vuông góc OA hay d nhận \(\overrightarrow{OA}=\left(8;-1\right)\) là 1 vtpt
Hệ số góc: \(k=-\dfrac{8}{-1}=8\)
Đường thẳng d ở đây để làm gì nhỉ?
Theo định lý đường xiên - đường vuông góc ta có \(d\left(O;\Delta\right)\le OA\)
Dấu "=" xảy ra khi d vuông góc OA hay d nhận \(\overrightarrow{OA}=\left(8;-1\right)\) là 1 vtpt
Hệ số góc: \(k=-\dfrac{8}{-1}=8\)
Cho điểm A (1; 1), tồn tại điểm B thuộc đường thẳng d: 2x + 3y + 4 = 0 sao cho đường thẳng d và đường thẳng AB hợp với nhau một góc 45 độ. Biết điểm B có tung độ âm, hoành độ điểm B là ?
Trong mặt phẳng Oxy , cho điểm I thuộc đường thẳng delta : x+2y-2=0 và hai điểm A(1;-1) , B(4;2) . Phương trình đường tròn (C) có tâm I và đi qua hai điểm A , B :
Trong hệ tọa độ Oxy cho tam giác ABC cân tại A, M (-1; 1) và N (-1; -7) lần lượt thuộc các cạnh AB và tia đối của CA sao cho BM = CN. Biết rằng đường thẳng BC đi qua điểm E (-3; -1) và điểm B thuộc đường thẳng x + 4 = 0. Tìm tung độ điểm A
Cho 2 điểm A (2; 0), B (4; 1) và đường thẳng d: y = x +3. Tồn tại điểm X thuộc đường thẳng d sao cho biểu thức \(\left|XA-XB\right|\) đạt Max. Tìm Max
Cho điểm A (3; 5) và các đường thẳng y = 6, x = 2. Số đường thẳng d qua A tạo với các đường thẳng trên một tam giác vuông cân là ?
cho đường tròn x²+y²+4x-6y+5=0. Viết phương trình đường thẳng d đi qua A(3;2) và cắt (C) theo một dây cung ngắn nhất.
khoảng cách giữa delta x-y-1=0 và delta 2x-2y+3=0
(T) là đường tròn đi qua điểm A (3; 3), B (1; 1), C(5; 1). Dây cung MN vuông góc với bán kính của (T) tại điểm (3; 0). Tính độ dài đoạn thẳng MN
Đường thẳng d qua M (4; 1) và cắt các tia Ox, Oy lần lượt tại A và B sao cho tổng OA + OB nhỏ nhất. Viết phương trình đường thẳng d