Lấy A(1;0) thuộc Δ1
Vì Δ1//Δ2 nên d(A;Δ2)=d(Δ1;Δ2)
=>\(d\left(\text{Δ}_1;\text{Δ}_2\right)=\dfrac{\left|1\cdot2+0\cdot\left(-2\right)+3\right|}{\sqrt{2^2+\left(-2\right)^2}}=\dfrac{5}{2\sqrt{2}}=\dfrac{5\sqrt{2}}{4}\)
Lấy A(1;0) thuộc Δ1
Vì Δ1//Δ2 nên d(A;Δ2)=d(Δ1;Δ2)
=>\(d\left(\text{Δ}_1;\text{Δ}_2\right)=\dfrac{\left|1\cdot2+0\cdot\left(-2\right)+3\right|}{\sqrt{2^2+\left(-2\right)^2}}=\dfrac{5}{2\sqrt{2}}=\dfrac{5\sqrt{2}}{4}\)
Cho điểm A (8; -1) và đường thẳng d: 2x - y - 7 = 0. Tồn tại đường thẳng \(\Delta\) đi qua O và cách A một khoảng lớn nhất. Hệ số góc của \(\Delta\) là ?
Trong mặt phẳng Oxy , cho điểm I thuộc đường thẳng delta : x+2y-2=0 và hai điểm A(1;-1) , B(4;2) . Phương trình đường tròn (C) có tâm I và đi qua hai điểm A , B :
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)
Cho 2 đường tròn C: x^2 + y^2 - 2x -2y +1=0 ; C’ : x^2 + y^2 +4x -5=0 cùng đi qua điểm M (1,0) . Viết PT đường thẳng đi qua M cắt 2 đường tròn trên lần lượt A và B sao cho MA=2MB
Các bạn giải hộ mình đang cần gấp, cảm ơn.
Trong mặt phẳng Oxy , hai đường thẳng d1:\(2x-4y+1=0\) và d2:\(\left\{{}\begin{matrix}x=-1+mt\\y=3-\left(m+1\right)t\end{matrix}\right.\) vuông góc với nhau khi và chỉ khi
Hãy xác định tọa đồ của các đỉnh của △ABC. Biết M(-1;1) là trung điểm cạnh BC và hai cạnh kia có phương trình là x+y-2=0; 2x+6y+3=0
Xác định (P): y = ax2 + 2x + c biết (P) qua A (1; 0) và đỉnh I(3; -4)
Giải phương trình và bất phương trình
a) \(3\sqrt{-x^2+x+6}+2\left(2x-1\right)>0\)
b)\(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\left(x+y\right)\left(2x-3\right)+1=0\\x^2+y^2+xy+\dfrac{3}{4\left(x+y\right)^2}=\dfrac{7}{4}\end{matrix}\right.\)