Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nam Phạm An

Cho \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)

CM: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)

 Mashiro Shiina
9 tháng 1 2019 lúc 6:23

Từ giả thiết suy ra:

\(\left\{{}\begin{matrix}\dfrac{a}{b-c}=\dfrac{-b}{c-a}+\dfrac{-c}{a-b}=\dfrac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\\\dfrac{b}{c-a}=\dfrac{-c}{a-b}+\dfrac{-a}{b-c}=\dfrac{-bc+c^2-a^2+ab}{\left(a-b\right)\left(b-c\right)}\\\dfrac{c}{a-b}=\dfrac{-a}{b-c}+\dfrac{-b}{c-a}=\dfrac{-ac+a^2-b^2+bc}{\left(b-c\right)\left(c-a\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{\left(b-c\right)^2}=\dfrac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\\\dfrac{b}{\left(c-a\right)^2}=\dfrac{-bc+c^2-a^2+ab}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\\\dfrac{c}{\left(a-b\right)^2}=\dfrac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\end{matrix}\right.\)

Cộng theo vế suy ra đpcm


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
poppy Trang
Xem chi tiết
 Mashiro Shiina
Xem chi tiết
cao minh thành
Xem chi tiết
Big City Boy
Xem chi tiết
Vũ Phương Thảo
Xem chi tiết
Nhật Minh
Xem chi tiết
dia fic
Xem chi tiết
Big City Boy
Xem chi tiết