Giải
Kéo dài BI cắt đường song song với AE kẻ từ C tại H, ta có:
\(\Delta\)AMN = \(\Delta\)CHI (g.c.g)
\(\Rightarrow\) AM = CH ; MN = HI
KE là đường trung bình \(\Delta\)BHC
\(\Rightarrow\) KE = \(\frac{CH}{2}\)
Mặt khác DN // BI (DA = DB, NA = NI)
\(\Rightarrow\) AM = MK
Do đó AK = \(\frac{4}{5}\)AE
\(\Rightarrow\) SABK = \(\frac{4}{5}\)SABE = \(\frac{4}{5}.\frac{1}{2}\)SABC
Hay SABK = \(\frac{2}{5}\)SABC (1)
Mà SMKIN = \(\frac{1}{2}\)(MN + KI)h = \(\frac{1}{2}\)KH . h
(MN = IN ; h là khoảng cách giữa hai đường MN và KI)
SABK = \(\frac{BK.2h}{2}\) = BK . h
Vì BK = KH \(\Rightarrow\) SABK = 2 . SMNIK (2)
Từ (1) và (2) \(\Rightarrow\) 2 . SMNIK = \(\frac{2}{5}\)SABC
Vậy SMNIK = \(\frac{1}{5}\)SABC