Cho \(\Delta\)ABC , gọi D,E,F lần lượt là trung điểm của BA,CA,BA.M là điểm tuỳ ý thuộc miền trong \(\Delta\)ABC.Gọi A',B',C' lần lượt là điểm đối xứng của M qua D,E,F
a)CMR:AA',BB',CC' đồng quy
b)CMR:\(\Delta\)MAA' và \(\Delta\)ABC có chung trọng tâm G
c)Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC . Gọi Q,N,P lần lượt là hình chiếu vuông góc của I xuống BC,CA,AB.Kí hiệu p là nửa chu vi của tam giác ABC , biết rằng \(\frac{AP^2}{BP}+\frac{BQ^2}{QC}+\frac{CN^2}{NA}=p.\)Tính các góc của tam giác ABC