Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vân Nguyễn Thị

Cho \(\Delta\)ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BM vuông góc với AD tại M, kẻ CN vuông góc với AE tại N. Gọi O là giao điểm của hai đường thẳng BM và CN. CMR: AO là tia phân giác góc DAE.  

Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 21:20

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔDMB vuông tại M và ΔENC vuông tại N có

DB=EC

\(\widehat{D}=\widehat{E}\)

Do đó: ΔDMB=ΔENC

Suy ra: \(\widehat{DBM}=\widehat{ECN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

=>ΔOBC cân tại O

=>OB=OC

hay O nằm trên đường trung trực của BC(1)

Ta có:AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO⊥BC

=>AO⊥DE

Ta có: ΔADE cân tại A

mà AO là đường cao

nên AO là phân giác


Các câu hỏi tương tự
Nguyen Phuong Nga
Xem chi tiết
New year
Xem chi tiết
Ghi Manh
Xem chi tiết
Hùng Lê
Xem chi tiết
Song tử ♊
Xem chi tiết
Song tử ♊
Xem chi tiết
Hùng Lê
Xem chi tiết
Chu Thuy Hanh
Xem chi tiết
Chu Thuy Hanh
Xem chi tiết