Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔDMB vuông tại M và ΔENC vuông tại N có
DB=EC
\(\widehat{D}=\widehat{E}\)
Do đó: ΔDMB=ΔENC
Suy ra: \(\widehat{DBM}=\widehat{ECN}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
=>ΔOBC cân tại O
=>OB=OC
hay O nằm trên đường trung trực của BC(1)
Ta có:AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO⊥BC
=>AO⊥DE
Ta có: ΔADE cân tại A
mà AO là đường cao
nên AO là phân giác