Bài 9: Tính chất ba đường cao của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Anh

Cho \(\Delta ABC\)nhọn, các đường cao BD, CE cắt nhau tại H. Vẽ điểm K sao cho AB là đường trung trực của HK. Chứng minh \(\widehat{KAB}=\widehat{KCB}\)

Nguyễn Thị Huyền Trang
16 tháng 6 2017 lúc 10:42

A B C H K D E F

Do 2 đường cao BD và CE cắt nhau tại H => H là trực tâm của tam giác ABC. Nối A với H sao cho AH cắt BC tại F, ta có AF là đường cao thứ 3 của tam giác ABC => \(AF\perp BC\)

\(\Delta ABF\) vuông tại D \(\Rightarrow\widehat{BAF}+\widehat{ABF}=90^0\) hay \(\widehat{ABF}=\widehat{HAE}\) (1)

\(\Delta BEC\) vuông tại E \(\Rightarrow\widehat{BCE}+\widehat{CBE}=90^0\) hay \(\widehat{ABF}+\widehat{KCB}=90^0\) (2)

Từ (1) và (2) => \(\widehat{HAE}=\widehat{KCB}\) (3)

Ta dễ chứng minh được \(\Delta KAE=\Delta HAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{KAE}=\widehat{HAE}\) hay \(\widehat{KAB}=\widehat{HAE}\) (4)

Từ (3) và (4) \(\Rightarrow\widehat{KAB}=\widehat{KCB}\)

Vậy...


Các câu hỏi tương tự
Pe Heo Lovely
Xem chi tiết
Nguyễn Thị Khánh Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
:D :D
Xem chi tiết
Vũ Thị Hoa
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Jerry Thối
Xem chi tiết
Hoàng Quỳnh Anh
Xem chi tiết