Cho \(\Delta ABC\)có \(\widehat{B}< 90^o\)và \(\widehat{B}=2\widehat{C}\). Kẻ đường cao AH. Trên tia dối của tia BA lấy E sao cho BE=BH. Đường thẳng HE cắt AC tại D.
a, Chứng minh \(\widehat{BEH}=\widehat{ACB}\)
b, Chứng minh DH=DC=DA
c, Lấy B' sao cho H là trung điểm của BB' . Chứng minh \(\Delta AB'C\)cân
d, Chứng minh AE=HC
a: góc BEH=góc BHE=góc DHC
góc ABC=2*góc ACB
=>2*góc BEH=góc ACB
=>góc BEH=góc ACB
b: góc BEH=góc DHC
góc BEH=góc DCH
=>góc DHC=góc DCH
=>DH=DC
góc DHC+góc DHA=90 độ
góc DCH+góc DAH=90 độ
mà góc DHC=góc DCH
nên góc DAH=góc DHA
=>DA=DH
=>DA=DC=DH
c: Xét ΔABB' có
AH vừa là đường cao, vừa là trung tuyến
nên ΔAB'B cân tại A
=>góc ABB'=góc AB'B
=>góc AB'B=2*góc C
=>góc B'AC+góc C=2*góc C
=>góc B'AC=góc B'CA
=>ΔB'AC cân tại B'