Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bá Hải

Cho \(\Delta ABC\) cân tại A. Gọi D là trung điểm của BC. Từ D kẻ DE \(\perp\) AB, DF \(\perp\) AC. Chứng minh rằng:

a) \(\Delta ABD=\Delta ACD\)

b) AD \(\perp\)BC

c) Cho AC = 10cm, BC = 12cm. Tính AD.

d) Tam giác DEF cân.

Hắc Hường
31 tháng 1 2018 lúc 21:48

Hình vẽ:

A B C E F D

Giải:

a) Xét tam giác ABD và tam giác ACD, có:

\(AB=AC\) (Tam giác ABC cân tại A)

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)

\(BD=CD\) ( D là trung điểm của BC)

\(\Leftrightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b) Ta có: \(\Delta ABD=\Delta ACD\) (câu a)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}\) (Hai cạnh tương ứng)

Lại có: \(\widehat{ADB}+\widehat{ADC}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AD\perp BC\)

c) Có D là trung điểm của BC

\(\Leftrightarrow BD=\dfrac{1}{2}BC=\dfrac{1}{2}.12=6\left(cm\right)\)

Lại có tam giác ABC cân tại A

\(\Leftrightarrow AC=AB=10\left(cm\right)\)

Áp dụng dịnh lý Pitago vào tam giác ABD, có:

\(AB^2=AD^2+BD^2\)

Hay \(10=AD^2+6^2\)

\(\Leftrightarrow AD^2=10^2-6^2=64\)

\(AD=\sqrt{64}=8\left(cm\right)\)

d) Xét tam giác BDE và tam giác CDF, có:

\(\widehat{BED}=\widehat{CFD}=90^0\)

\(BD=CD\) (D là trung điểm của BC)

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A) \(\Rightarrow\Delta BDE=\Delta CDF\left(ch-gn\right)\) \(\Rightarrow DE=DF\) (Hai cạnh tương ứng) \(\Rightarrow\Delta DEF\) cân tại D Vậy ...
Lê Ngọc Phương Nhung
31 tháng 1 2018 lúc 22:25

Giải:

a)Xét Δ ABD và Δ ACD có:

AD là cạnh chung

AB=AC (vì Δ ABC cân tại A)

BD=CD (vì D là trung điểm của BC)

Vậy: Δ ABD = Δ ACD (c.c.c)

b)Vì Δ ABD = Δ ACD (chứng minh trên)

nên: \(\widehat{ADB}=\widehat{ADC}\) (hai góc tương ứng)

mà: \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)

nên: \(\widehat{ADB}+\widehat{ADB}=180^0\)

\(2\widehat{ADB}=180^0\)

\(\widehat{ADB}=\dfrac{180^0}{2}\)

\(\widehat{ADB}=90^0\)

Do đó: AD⊥BC tại D
c)Ta có: BD=CD (vì D là trung điểm của BC)

Mà: BC=12cm (giả thiết)

lại có: BC=BD+CD

nên: \(BD=CD=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)

* Áp dụng định lí Pi-ta-go vào Δ ADC vuông tại D có:

\(AC^2=AD^2+CD^2\)

\(10^2=AD^2+6^2\)

\(100=AD^2+36\)

\(AD^2=100-36\)

\(AD^2=64\)

\(AD=\sqrt{64}\left(AD>0\right)\)

Vậy: AD=8(cm)

d)Xét Δ BED vuông tại E và Δ CFD cân tại F có:

\(\widehat{B}=\widehat{C}\) (vì Δ ABC cân tại A)

\(BD=CD\) (vì D là trung điểm của BC)

Vậy: Δ BED =Δ CFD ( cạnh huyền_góc nhọn)

\(\Rightarrow DE=DF\) (hai cạnh tương ứng)

Do đó: Δ DEF cân tại D

Bùi Thiện Hùng
15 tháng 4 2019 lúc 21:55

a.Xét tam giác ABD VÀ tam giác ACD có:

AB=AC(vì là 2 cạnh bên)

GocB=gocC(vì là 2 góc ở đay)

BD=DC(vì D là trung điểm của BC theo gt)

suy ra tam giác abd=tam giac ACD(C.G.C)suy ra:góc ADB=gocsADC(vì là 2 góc tương ưng = nhau)mà lại là 2 góc kề bù suy ra

GgocsADC+gocsADB=180độ suy ra

2goc ADB=180độhay góc ADB=90độ hay AD vuông góc BC(dpcm0

c.Ta có DC =12/6=6

Áp dụng định lý Py-ta-go cho tam giác vuông ADC ta co

AD^2=AC^2-DC^2

DC^2=64 suy ra DC=8

Bùi Thiện Hùng
15 tháng 4 2019 lúc 22:01

mình trả lời nốt câu d mà mình quên,xin lỗi nhahihi

ta có góc BAD=CAD(vì tam giác ABD=ACD THEO câu a)

Xét tam giac vuông FAD và EAD có

ad chung

góc BAD=CAD(cmt)

suy ra tam giác FAD=EAD suy ra ED=FD hay tam giac DEF cân(đpcm)


Các câu hỏi tương tự
Nguyễn Thanh Hải
Xem chi tiết
chuong Nguyen Duy
Xem chi tiết
Phuong Anh
Xem chi tiết
Bạch Khánh Linh
Xem chi tiết
Dy Kanh
Xem chi tiết
Nha Phuong
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phuong Anh
Xem chi tiết
Ngưu Kim
Xem chi tiết