AB = AC rồi sao AN lại còn = AC nữa nhỉ????
AB = AC rồi sao AN lại còn = AC nữa nhỉ????
Cho \(\Delta ABC\) cân tại A có \(\widehat{BAC}\)=1080. Trên tia phân giác của \(\widehat{ABC}\) lấy điểm N sao cho CN=CA. Tính \(\widehat{BCN}\)
Cho \(\Delta\) ABC cân tại A (A>90 \(^o\) ) . Trên tia đối của AB,AC lấy lần lượt 2 điểm M,N sao cho AM=AN<AB.Tia BN cắt tia CM tại O.
CMR:a, \(\Delta\) ABN=\(\Delta\) ACM. Từ đó suy ra \(\widehat{ONC}\) =\(\widehat{OMB}\)
b,OM=ON
c,OA là tia phân giác của \(\widehat{BOC}\)
Cho \(\Delta ABC\) vuông tại A, có \(\widehat{B}=60^o\), trên cạnh BC lấy điểm E sao cho BE=BA. Tia phân giác của góc B cắt AC ở D
a)Tính góc C (làm rồi)
b)So sánh DA và DE (làm rồi)
c)Trên tia BA lấy điểm F sao cho A là trung điểm của BF. CHứng minh 3 điểm E,D,F thẳng hàng
giúp phần c thôi
Cho \(\Delta ABC\) vuông tại A, có \(\widehat{B}=60^o\), trên cạnh BC lấy điểm E sao cho BE=BA. Tia phân giác của góc B cắt AC ở D
a)Tính góc C (làm rồi)
b)So sánh DA và DE (làm rồi)
c)Trên tia BA lấy điểm F sao cho A là trung điểm của BF. CHứng minh 3 điểm E,D,F thẳng hàng
giúp phần c thôi
Cho tam giác ABC có \(\widehat{B}=2\widehat{C}\) . Tia phân giác góc B cắt AC ở D . Trên tia đối của tia BD lấy điểm E sao cho BE=AC . Trên tia đối của tia CB lấy điểm K sao cho CK = AB . Chứng minh AE = AK
Cho \(\Delta\)ABC có \(\widehat{B}-\widehat{C}=a\) , trên tia đối của tia AC , lấy điểm D sao cho AD = AC. Tính \(\widehat{DBC}\) theo a .
Cho tam giác ABC, \(\widehat{A}=90^0\) và AB=AC. Trên các cạnh AB và AC lần lượt lấy điểm D và E sao cho AD=AE. Qua A và D kẻ đường vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt tia CA tại I. Chứng minh rằng:
a/ A là trung điểm của CI
b/ CM=MN
Cho tam giác ABC. Tia phân giác của góc B cắt AC tại D. Trên tia đối của tia BD lấy điểm N sao cho BN=AC. Trên tia đối của tia CB lấy điểm P sao cho CP=AB
a) CM Góc ABN = góc ACP
b) CM AN = AP
c)Tìm đk của góc ACB để AN vuông góc với AP
1. Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm I của 1 đoạn thẳng đó. Chứng minh rằng:
a) \(\Delta\)AIC = \(\Delta\)BID và \(\Delta\)AID = \(\Delta\)BIC ;
b) AC // BD và AD // BC ;
c) \(\Delta\)ABC = \(\Delta\)BDA và \(\Delta\)CAD = \(\Delta\)DBA.
2. Cho hai đoạn thẳng AB và CD song song và bằng nhau. Gọi I là giao điểm của AC và BD. Chứng minh rằng:
a) I là trung điểm của mỗi đoạn thẳng AC và BD ;
b) AD // BC.
3. Qua trung điểm I của đoạn thẳng BC, kẻ đường vuông góc với BC. Trên đường thẳng đó lấy điểm A.
a) Chứng minh AI là tia phân giác của góc \(\widehat{BAC}\);
b) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh rằng: AB = AC = CD = DB.
4. Cho \(\Delta\)ABC vuông tại A. Phân giác góc B cắt AC tại D. Lấy điểm E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh \(\Delta\)BAD = \(\Delta\)BED.
b) So sánh AD và ED, tính \(\widehat{BED}\).
c) Chứng minh AI = EI và AE \(\perp\)BD.
5. Cho tam giác ABC, hai đường phân giác AD, BE. Chứng minh:
a) Nếu \(\widehat{ADC}\)= \(\widehat{BEC}\)thì \(\widehat{A}\) = \(\widehat{B}\) ;
b) Nếu \(\widehat{ADB}\) = \(\widehat{BEC}\) thì \(\widehat{A}\) + \(\widehat{B}\)= \(120^0\)
6. Cho tam giác ABC ( \(\widehat{A}\) \(\ne\) \(90^0\)). Trên nửa mặt phẳng bờ AB không chứa điểm C , vẽ tia Ax \(\perp\) AB, trên đó lấy điểm E sao cho AE = AB , trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ay \(\perp\) AC , trên đó lấy điểm D sao cho AD = AC.
a) Chứng minh rằng BD = CE và BD \(\perp\) CE ;
b) Hai đường thẳng AB và DE có vuông góc với nhau không? Vì sao?
7. Cho tam giác ABC có \(\widehat{A}\) = \(80^0\), \(\widehat{B}\) = \(60^0\). Trên đường thẳng BC lấy các điểm BC lấy các điểm B' và C' sao cho BB' = AB và CC' = AC. Tính số đo các góc của tam giác AB'C' .