Xét \(\dfrac{1}{u_{n+1}}=\dfrac{u_n+4}{2u_n}=\dfrac{1}{2}\left(1+\dfrac{4}{u_n}\right)\) (1)
Đặt \(\dfrac{1}{u_n}=x_n\)
(1) <=> \(x_{n+1}=\dfrac{1}{2}\left(4x_n+1\right)=2x_n+\dfrac{1}{2}\)
<=> \(x_{n+1}+\dfrac{1}{2}=2\left(x_n+\dfrac{1}{2}\right)\) (2)
Đặt \(x_n+\dfrac{1}{2}=t_n\)
(2) <=> tn+1 = 2.tn => q = 2
Có: \(t_n=t_1.2^{n-1}\)
Mà \(t_1=x_1+\dfrac{1}{2}=\dfrac{1}{u_1}+\dfrac{1}{2}=\dfrac{3}{2}\)
=> \(t_n=\dfrac{3}{2}.2^{n-1}\)
=> \(x_n=\dfrac{3}{2}.2^{n-1}-\dfrac{1}{2}\)
=> \(u_n=\dfrac{2}{3.2^{n-1}-1}\)