Gọi K là tđ DC, trê MK lấy H(H thuộc AB)
Lại có M là tđ BD nên \(MK=\frac{1}{2}BC\left(1\right)\),MK//BC
HK//BC nên \(\frac{AK}{AC}=\frac{HK}{BC}=\frac{2}{3}\)\(\Rightarrow HK=\frac{2}{3}BC\left(2\right)\)
Lấy (2) trừ (1) có MH=1/6BC
HM//BC nên \(\frac{AH}{AB}=\frac{HM}{BE}=\frac{2}{3}\Rightarrow HM=\frac{2}{3}BE=\frac{1}{6}BC\left(3\right)\)
MK//BC nên \(\frac{AK}{AC}=\frac{MK}{EC}=\frac{2}{3}\Rightarrow MK=\frac{2}{3}EC=\frac{1}{2}BC\left(4\right)\)
Lấy (4) chia (3) đc \(\frac{\frac{2}{3}EC}{\frac{2}{3}EB}=\frac{\frac{1}{2}BC}{\frac{1}{6}BC}\Leftrightarrow\frac{EC}{EB}=3\)