a) Dễ dàng cm được : tam giác HBA đồng dạng với tam giác HAC (g.g)
=> \(\frac{HB}{AH}=\frac{AB}{AC}\) hay \(\frac{\frac{BH}{2}}{\frac{AH}{2}}=\frac{AB}{AC}\) hay \(\frac{BP}{AQ}=\frac{AB}{AC}\) ; góc ABC = góc HAC
=> tam giác PBA đồng dạng với tam giác QAC (c.g.c)
b) Vì tam giác ABP đồng dạng với tam giác CAQ nên góc APB = góc AQC
=> góc APC = góc CQH (góc ngoài)
Lại có góc QHC = góc QHP = 90 độ
=> tam giác HQC đồng dạng với tam giác HPA (g.g)
c) Vì tam giác ABP đồng dạng với tam giác CAQ nên góc BAP = góc ACQ
Lại có góc BAP + góc PAC = 90 độ
=> góc ACQ + góc PAC = 90 độ
=> AP vuông góc với CQ