Cho ΔABC vuông ở A. Điểm H là trung điểm của BC.Kẻ HD⊥AB và HE⊥AC (D ϵ AB, E ϵ AC)
a)Chứng minh tứ giác AEHD là hình chữ nhật.
b)Tính SAEHD biết AE=3cm, AH =5cm
c)Gọi P là điểm đối xứng của H qua AB. Chứng minh AH//BP
d)Trên tia đối của EH lấy Q sao cho QE=EH. Chứng minh A là trung điểm của đoạn thẳng PQ
Câu 3: (0,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH và đường phân giác BD a) Chứng minh đẳng thức AD ×BC- AB ×DC b) Ching minh 🔺ABC-🔺HBA D) Vẽ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=5cm, trên tia đối của tia BA lấy điểm F sao cho BF =6cm. Chứng minh BC//EF (Biết AB = 12cm, AC = 16cm) Giúp mik với ( cần gấp ạ)
Cho ∆ABC vuông tại A (AB < AC) có AH là đường cao.
a) Chứng minh: △HBA∼ △ABC
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi M là trung điểm của AH. Chứng minh: HD.AC = BD.MC
c) Chứng minh:MC⊥DH
1) Cho tam giác ABC vuông tại A , đường cao AH. Trên tia đối của tia AH lấy điểm D sao cho AD = AH. Gọi E là trung điểm HC , F là giao điểm của DE và AC
a) C/m HF cắt CD tại trung điểm của CD
b) C/m HF bằng 1/3 CD
c) Gọi I là trung điểm AH . C/m EI vuông góc với AB
d) C/m BI vuông góc với AE
cho tam giác ABC vuông ở A; AB=48cm; AC=64cm. Trên tia đối của tia AB lấy điểm D sao cho AD=27cm; trên tia đối của tia AC lấy điểm E sao cho AE= 36cm
a) chứng minh tam giác ABC đồng dạng tam giác ADE
b) tính độ dài của đoạn BC; DE
c) chứng minh DE//BC
d) chứng minh EB vuông góc BC
Cho tam giác ABC vuông tại A đường cao AH biết AB = 12 cm AC = 16 cm
a )tính độ dài BC
b) Chứng minh rằng AB^2=BC.HB
c)Vẽ đường trung tuyến AM của tam giác abc trên tia đối tia ma lấy điểm E sao cho ME = 5 cm trên tia đối của tia BA lấy điểm F sao cho BF = 6.CMR BC//EF
giúp mk vs mk cần nhất câu c
Cho ∆ABC vuông tại A (AB < AC) có AH là đường cao.
a) Chứng minh: △HBA∼ △ABC
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi M là trung điểm của AH. Chứng minh: HD.AC = BD.MC
c) Chứng minh:MC⊥DH
Làm ơn giúp mình với
Cho hình vuông ABCD cạnh a. Gọi I là trung điểm của AB. Gọi M là điểm đối xứng của D qua C. Gọi P là điểm đối xứng của M qua D. Trên tia DA lấy điểm Q sao cho ΔPDQ ∼ ΔIAD. Trên tia BC lấy điểm N sao cho ΔMCN ∼ ΔIAD.
a) Tứ giác MNPQ là hình gì?
b) Đường thẳng DI cắt PN tại E, cắt QM tại F.
Chứng minh: EF = \(\dfrac{MN+PQ}{2}\)
c) Chứng minh AQPN là hình bình hành.
d) Gọi S là giao điểm của PN và QM. Gọi T là giao điểm của QI và DC, R là trung điểm của PQ. Chứng minh: S, T, R thẳng hàng.
Cho tam giác ABC vuông tại A( AC>AB), đường cao AH (H thuộc BC). Trên tia đối của tia HB lấy điểm D sao cho HD=HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E.
a) Cm CD.CB=CA.CE
b) Tính số đo góc BEC
c) Gọi M là trung điểm của BE. Tia AM cắt BC tại G. Cm: \(\frac{GB}{BC}=\frac{HD}{AH+HC}\)