Bài 7: Định lí Pitago

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Miyamoto Hanako

Cho ΔABC vuông tại A. Biết AB = 20cm, BC = 25cm

a) Tính AC

b) Trên tia đối tia AB lấy K sao cho BA = AK. Chứng minh ΔBKC cân

c) Kẻ đường thẳng d ⊥ AC tại C. Gọi I là trung điểm CK. Tia BI cắt d tại M. Chứng minh BI = IM

Chiyuki Fujito
4 tháng 2 2020 lúc 15:39

B A I d C M K

( HÌNH ẢNH CHỈ MANG TÍNH CHẤT MINH HỌA )

a) +) Xét \(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\) ( định lí Py - ta - go )

\(\Rightarrow AC^2=BC^2-AB^2\)

\(\Rightarrow AC^2=25^2-20^2\)

\(\Rightarrow AC^2=625-400=225\)

\(\Rightarrow AC=\sqrt{225}=15\) ( cm ) ( do AC > 0 )

Vậy AC = 15 ( cm)

b) +) Xét \(\Delta ABC\)\(\Delta AKC\) có :

AB = AK ( gt)

\(\widehat{BAC}=\widehat{KAC}\left(=90^o\right)\)

AC : cạnh chung

\(\Rightarrow\Delta ABC=\Delta AKC\) ( c-g-c)

\(\Rightarrow\) BC = KC ( 2 cạnh tương ứng )

+) Xét \(\Delta BKC\)

BC = KC ( cmt)

\(\Rightarrow\Delta BKC\) cân

c) Ta có \(\left\{{}\begin{matrix}BK\perp AC\\CM\perp AC\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\) BK // CM

\(\Rightarrow\widehat{BKC}=\widehat{KCM}\) ( 2 góc so le trong )
+) Xét \(\Delta BIK\)\(\Delta MIC\)

\(\widehat{BKC}=\widehat{KCM}\) ( cmt)

IK = IC ( gt)

\(\widehat{BIK}=\widehat{MIC}\) ( 2 góc đối đỉnh )

\(\Rightarrow\Delta BIK=\Delta MIC\) ( g-c-g)

\(\Rightarrow BI=MI\) ( 2 cạnh tương ứng )

~ Học tốt

# Chiyuki Fujito

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
4 tháng 2 2020 lúc 15:42

Bạn tự vẽ hình nha

a)Xét \(\Delta ABC\) vuông tại A có :

\(AB^2+AC^2=BC^2\) ( định lý pytago)

\(20^2+AC^2=25^2\)

\(\Rightarrow AC^2=25^2-20^2=625-400\)

\(\Rightarrow AC^2=225\)

\(\Rightarrow AC=\sqrt{225}=15cm\)

b)Xét \(\Delta BAC\)\(\Delta CAK\) có :

AC là cạnh chung

BA=AK (gt )

\(\widehat{BAC}=\widehat{CAK}=90^o\)

\(\Rightarrow\Delta BAC=\Delta CAK\left(c-g-c\right)\)

\(\Rightarrow BC=CK\) ( 2 cạnh tương ứng )

\(\Rightarrow\Delta BKC\) cân tại C

c)Ta có :\(d\perp AC\)

\(AB\perp AC\)

\(\Rightarrow d\) // AB

\(\Rightarrow\)a//BK ( ba điểm này thẳng hàng mà )

\(\Rightarrow\widehat{BKC}=\widehat{KCM}\) ( hai góc so le trong )

Xét ΔBIK và ΔCIM có :

IK = IC ( I là trung điểm của CK )

\(\widehat{BIK}=\widehat{CIM}\)( đối đỉnh )

\(\widehat{BKI}=\widehat{ICM}\) ( Cmt )

\(\Rightarrow\Delta BIK=\Delta CIM\left(g-c-g\right)\)

\(\Rightarrow BI=IM\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
linh chi
Xem chi tiết
Thanh Do
Xem chi tiết
Nam Nguyễn
Xem chi tiết
Chi Trần
Xem chi tiết
Nyvn To
Xem chi tiết
daophanminhtrung
Xem chi tiết
Nguyễn Đắc Phú
Xem chi tiết
kien tran
Xem chi tiết
Nguyễn Đắc Phú
Xem chi tiết