a: Xét tứ giác AFBD có
\(\widehat{ADB}=\widehat{DBF}=\widehat{FAD}=90^0\)
Do đó: AFBD là hình chữ nhật
a: Xét tứ giác AFBD có
\(\widehat{ADB}=\widehat{DBF}=\widehat{FAD}=90^0\)
Do đó: AFBD là hình chữ nhật
Cho ΔABC nhọn. Đường cao AD, B và E cắt nhau tại H. Đường thẳng vuông góc với AD tại A và đường thẳng vuông góc với BD tại B cắt nhau tại F
a) AFBD là hình gì ? Vì sao ?
b) Gọi K là gian AB và FD : I trung điểm HC. C/m E và D đối xứng với nhau qua KI.
Cho △ABC vuông tại A, đường phân giác của góc A cắt BC tại D. Gọi I là trung điểm của DC và E là điểm đối xứng với A qua I.
a) Chứng minh tứ giác ADEC là hình bình hành.
b) Từ D kẻ DM vuông góc với AB (M ∈ AB), kẻ DN vuông góc với AC (N ∈ AC). Chứng minh tứ giác AMDN là hình vuông.
c) Chứng minh ba điểm M,D,E thằng hàng
Cho ΔABC vuông cân tại A. Trên AB lấy D. Trên AC lấy E sao cho AD = AE. Qua A và D kẻ các đường thẳng vuông góc với BE cắt BC ở I và K. Gọi M là giao của DK và AC.
C/m : a) ΔBAE = ΔCAD.
b) ΔMCD cân
c) IK = IC
Cho ΔABC vuông cân tại A. Trên AB lấy D. Trên AC lấy E sao cho AD = AE. Qua A và D kẻ các đường thẳng vuông góc với BE cắt BC ở I và K. Gọi M là giao của DK và AC.
C/m : a) ΔBAE = ΔCAD.
b) ΔMCD cân
c) IK = IC
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho tam giác ABC cân tại A,đường cao AD. Gọi E là trung điểm của AC, f là điểm đối xứng với điểm D qua E a/ tứ giác ADCF là hình gì ? Vì sao? b/ chứng minh AF = BD c/gọi N là điểm đối xứng với A qua D. Chứng minh tứ giác ABNC là hình thoi d/tìm điều kiện của tam giác ABC để hình chữ nhật ADCF là hình vuông?
Bài 9: cho ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC.
a) Chứng minh: D đối xứng với E qua A
b) DHE là hình gì ? vì sao?
c) Tứ giác BDEC là hình gì ? vì sao ?
d) Chứng minh : BC=BD+CE
Cho tam giác ABC vuông tại A (AB<AC),E là trung điểm của BC.Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O là giao điểm của AE và DF
a)Chứng minh tứ giác ADEF là hình chữ nhật
b)Gọi K là điểm đối xứng của E qua D. Chứng minh tứ giác AECK là hình thoi
c)Kẻ EM vuông góc với AK tại M. Chứng minh DM⊥MF
d)Kéo dài BD cắt KC tại I, cho AB=3cm, AC=4cm. Tính độ dài đoạn KI
Cho ∆ABC vuông tại A (AB < AC) có đường cao AN. Gọi D và F lần lượt là trung điểm BC
và AC. Qua D kẻ DE vuông góc với AB tại E.
a) Chứng minh EB = EA và chứng minh DF ⊥ AC.
b) Chứng minh AD = EF và chứng minh ∆ENF vuông.
c) Gọi H đối xứng D qua AB. Chứng minh HBDA là hình thoi.
d) Gọi K đối xứng D qua AC. Chứng minh ADCK là hình thoi. Và suy ra H; A và K thẳng hàng.
giải giúp em đi ạ