Ôn tập chương I : Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tranggg Nguyễn

Cho ΔABC nhọn, có AB<AC. Đường cao BE và CF cắt nhau tại H, M là trung điểm của BC, K đối xứng với H qua M. Chứng minh :

a. Tứ giác BHCK là hình bình hành

b. BK ⊥ AB, CK ⊥ AC

c. Gọi I là điểm đối xứng với H qua BC. Chứng minh : Tứ giác BIKC lả hình thang cân.

d. BK cắt HI tại G, ΔABC cần thêm điều kiện gì để tứ giác GHCK hình thang cân?

Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 8:25

a: Xét tứ giác BHCK co

M là trung điểm chung của BC và HK

nên BHCK là hình bình hành

b: BH//CK

BH vuông góc với CA

Do đó: CK vuông góc với CA

CH//BK

CH vuông góc với BA

DO đó; BK vuông góc với BA

c: Gọi giao của HI và BC là G

=>G là trung điểm của HI

Xét ΔHIK có HG/HI=HM/HK

nên GM//IK

=>BC//IK

Vì H đối xứng với I qua BC

nên CH=CI=BK

Xét tứ giác BCKI có

KI//BC

BK=CI

DO đo: BCKi là hình thang cân


Các câu hỏi tương tự
Anna Lee
Xem chi tiết
Anngoc Anna
Xem chi tiết
Nguyễn Thảo My
Xem chi tiết
Ánh Tuyết
Xem chi tiết
Kuzuki Zeck
Xem chi tiết
Viễn Đang Lo Âu
Xem chi tiết
Thúy Lê thanh
Xem chi tiết
Trang Phạm
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết