Lời giải:
Giả sử các điểm có vị trí như hình vẽ. Trong đó:
K là tâm đường tròn nội tiếp tam giác AMN
\(KL\perp AM; IU\perp AB (L\in AM; U\in AB)\)
Ký hiệu \(p_i\) là nửa chu vi tam giác \(i\)
\(A,K,I\) thẳng hàng vì cùng nằm trên đường phân giác trong góc A.
Dễ thấy:
\(\triangle AMN\sim \triangle ABC(g.g)\)\(\Rightarrow \frac{p_{AMN}}{p_{ABC}}=\frac{AM}{AB}\)
\(\triangle AMK\sim \triangle ABI(g.g)\)
\(\Rightarrow \frac{AM}{AB}=\frac{AK}{AI}\)
Mà \(LK\parallel IU \) nên theo Talet thì \(\frac{AK}{AI}=\frac{LK}{IU}=\frac{R_1}{R}\)
Do đó: \(\frac{p_{AMN}}{p_{ABC}}=\frac{R_1}{R}\)
Hoàn toàn tương tự ta có: \(\frac{p_{CPQ}}{p_{ABC}}=\frac{R_2}{R}; \frac{p_{BED}}{p_{ABC}}=\frac{R_3}{R}\). Do đó:
\(\frac{R_1+R_2+R_3}{R}=\frac{p_{AMN}+p_{CPQ}+p_{BED}}{p_{ABC}}=\frac{AM+AN+MN+BE+BD+ED+CP+CQ+PQ}{AB+AC+BC}\)
\(=\frac{(AM+AN+CP+CQ+BE+BD)+(MN+DE+PQ)}{(AM+AN+CP+CQ+BE+BD)+(ME+NP+DQ)}=1\)
(do \(MN+DE+PQ=ME+NP+DQ\) do tính chất các tiếp tuyến cắt nhau)
\(\Rightarrow R_1+R_2+R_3=R\)
Ta có đpcm.