cho tam giác ABC bất kỳ , gọi M,N,P lần lượt là trung điểm các cạnh AB , BC , CA. H ,H' lần lượt là trực tâm các tâm giác ABC,MNP K đồi xứng với H qua H' chứng minh HA +HB +HC =HK
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
1.Cho tam giác ABC, gọi G là trọng tâm tam giác
a.Gọi H là điểm đối xứng với G qua B. CMR
vectơ HA - 5vectơ HB + vectơ HC = vectơ 0.
b.Gọi I và J là 2 điểm thoả mãn vectơ IA = 2vectơ IB , 3vectơ JA + 2vectơ JC = vectơ 0 . CM 3 điểm I,J,G thẳng hàng .
2.Cho tam giác đều ABC tâm O. M là điểm bất kì trong tam giác . Hạ MD,ME,MF lần lượt vuông góc với các cạnh BC,CA,AB.CMR vectơ MD + vectơ ME + vectơ MF = 3/2 vectơ MO
Cho tam giác ABC, M là một điểm bất kì không thuộc các cạnh AB, BC, CA. Gọi A', B', C' theo thứ tự là các điểm đối xứng của M qua trung điểm các cạnh BC, AC, AB. Chứng minh: AA', BB' và CC' đồng quy.
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC có I(-1;2) là trung điểm của cạnh BC . M(3;-2) là trung điểm của cạnh AC Gọi A'(4;-5) là điểm đối xứng với A qua điểm I.Tìm tọa độ các điểm của tam giác ABC.
Lưu ý:Chỉ sử dụng đến trọng tâm trung điểm
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)