cho tam giác ABC bất kỳ , gọi M,N,P lần lượt là trung điểm các cạnh AB , BC , CA. H ,H' lần lượt là trực tâm các tâm giác ABC,MNP K đồi xứng với H qua H' chứng minh HA +HB +HC =HK
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho ΔABC có trọng tâm từ M là điểm tùy ý. Gọi A1, B1, C1 lần lượt là các điểm đối xứng của M qua các trung điểm I, J, K của các cạnh BC, CA, AB
CM: AA1, BB1, CC1 đồng quy tại trung điểm mỗi đoạn
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN RẤT NHIỀU !!!
Cho tam giác ABC có A',B', C' lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh vecto BC' = vecto C'A = vecto A'B".
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)