Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho ΔABC có trọng tâm từ M là điểm tùy ý. Gọi A1, B1, C1 lần lượt là các điểm đối xứng của M qua các trung điểm I, J, K của các cạnh BC, CA, AB
CM: AA1, BB1, CC1 đồng quy tại trung điểm mỗi đoạn
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN RẤT NHIỀU !!!
cho tam giác ABC bất kỳ , gọi M,N,P lần lượt là trung điểm các cạnh AB , BC , CA. H ,H' lần lượt là trực tâm các tâm giác ABC,MNP K đồi xứng với H qua H' chứng minh HA +HB +HC =HK
Cho tam giác ABC có trọng tâm G, trung tuyến AM . Gọi I là điểm trên cạnh BC sao
cho CI IB
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
1) Cho tam giác ABC đều cạnh 5. M là trung điểm BC. I là trung điểm AM. Tính \(\left|\overrightarrow{BI}+\overrightarrow{CI}\right|\)
2) Cho tam giác ABC đều cạnh 7. G là trọng tâm. M là trung điểm AB. Tính \(\left|\overrightarrow{AG}+\overrightarrow{AM}\right|\)
3) Cho ngũ giác đều ABCDE nội tiếp (O). Tính \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\)
Cho hình vuông ABCD có độ dài cạnh bằng 6. Gọi M là trung điểm của BC và G là trọng tâm tam giác ADM. Tính độ dài vecto GD