Bài 3: Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh: ΔABD = ΔEBD và AE ⊥ BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho ΔABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA.
a) Chứng minh BD là đường trung trực của đoạn thẳng AE.
b) Qua A kẻ đường thẳng song song với BD cắt ED tại K. Chứng minh: KE < 2AB
Bài 4: Cho ΔABC vuông tại A, đường phân giác BD (BDϵAC). Từ D kẻ DH vuông góc với BC.
a) C/m ΔABD=ΔHBD.
b) So sánh AD và DC.
c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. C/m 3 điểm B, D, I Thẳng hàng.
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
cho ΔABC cân tại A, có góc BAC nhọn, qua A vẽ tia phân giác BAC cắt BC tại D a, chứng minh Δ ABD= ΔACD b, Vẽ đường trung tuyến CF cuả ΔABC cắt AD tại G chứng minh G là trọng tâm của ΔABC c, Gọi H là trung điểm của DC . Qua H vẽ đường thẳng vuông góc với cạnh DC cắt AC tại E. chưng minh ΔDEC câb d, chứng minh ba điểm BGE thẳng hàng và AD > BD.