Cho tam giác ABC cân đỉnh A, gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D. Từ D kẻ
đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Chứng minh AD AE
Cho tam giác cân ABC (AB = AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD = AE. Gọi M là trung điểm của BC. Chứng minh rằng:
a) DE // BC
b) tam giac MBD = tam giac MCE
c) tam giac AMD = tam giac AME
. Cho tam giác ABC cân tại A. Trên các cạnh AC, AB lần lượt lấy M, N sao cho AM = AN.
a) Chứng minh tam giác ABM = tam giác ACN .
b) Chứng minh MN // BC.
c) Gọi O là giao điểm của BM và CN. Chứng minh tam giác OBC cân.
Cho Δ ABC, gọc I là trung điểm của AC.
Trên tia đối của tia IB lấy điểm E sao cho IB=IE
a) chứng minh Δ AIE= CIB
b) Chứng minh AB// CE
c) Trên tia đối của CE lấy điểm F sao cho CE= CF Chứng minh Δ ABC= FCB suy ra AC// BF
Cho tam giác ABC cân tại A.Trên cạnh AB, AC lấy 2 điểm D, E sao cho AD=AE. Gọi M là trung điểm của BC.
a/ chứng minh tam giác ADE cân, DE//BC.
b/ chứng minh tam giác AMB=AMC, AM là trung điểm của BAC.
c/ chứng minh AM vuông góc BC.
d/ chứng minh tam giác NBD=NCE.
e/ chứng minh tam giác AMD=ANC.
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD = AE
a) So sánh góc ABD và ACE
b) Gọi I là giao điểm của BD và CE. ΔIBC là tam giác gì ? Vì sao ?
c) Gọi M là trung điểm cuả BC. Chứng minh A,I,M thẳng hàng
Cho tam giác ABC vuông tại A có góc ACB =60°. Trên cạnh BC lấy điểm D sao cho CA=CD. Gọi M là trung điểm của AD:
a, tính góc ABC và chứng tỏ tam giác ACD là tam giác cân
b, Chứng minh: tam giác ACM = tam giác DCM
c, Gọi P là giao điểm của CM và AB. Chứng minh: DP vuông góc BC
: Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a. So sánh BC và DE.
b. Tam giác ACD và tam giác ABE là tam giác gì?
c. Gọi M là trung điểm của BE. Chứng minh AM vuông góc với BE