a:
Ta có: ΔCAB cân tại C
mà CI là đường trung tuyến
nên CI vừa là phân giác vừa là đường cao
Xét ΔACD và ΔBCD có
CA=CB
\(\widehat{ACD}=\widehat{BCD}\)
CD chung
Do đó: ΔACD=ΔBCD
b: Ta có: ΔACD=ΔBCD
nên DA=DB
mà CA=CB
nên CD là đường trung trực của AB
a:
Ta có: ΔCAB cân tại C
mà CI là đường trung tuyến
nên CI vừa là phân giác vừa là đường cao
Xét ΔACD và ΔBCD có
CA=CB
\(\widehat{ACD}=\widehat{BCD}\)
CD chung
Do đó: ΔACD=ΔBCD
b: Ta có: ΔACD=ΔBCD
nên DA=DB
mà CA=CB
nên CD là đường trung trực của AB
Câu hỏi: Cho ΔABC, có góc B = góc C. Tia phân giác của góc A cắt BC tại D.
a. Chứng minh: ΔADB = ΔADC.
b. Chứng minh: AB = AC.
c. Chứng minh: AD là đường trung trực của BC.
d. Qua B kẻ đường thẳng song song với AC cắt AD tại A. Chứng minh: D là trung điểm của AE.
e. Trên cạnh BE lấy điểm I, trên cạnh AC lấy điểm K sao cho CK = BI. Chứng minh: I, D, K thẳng hàng.
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Câu hỏi: Cho ΔABC, có góc B = góc C. Tia phân giác của góc A cắt BC tại D.
a. Chứng minh: ΔADB = ΔADC.
b. Chứng minh: AB = AC.
c. Chứng minh: AD là đường trung trực của BC.
Cho \(\Delta ABC\) vuông tại A, gọi I là trung điểm của cạnh BC. Trên tia đối của tia IA lấy điểm D sao cho ID = IA
a) Chứng minh rằng: \(\Delta ABI=\Delta IDC\) ; AB // CD
b) Chứng minh rằng: \(CD\perp AC\)
c) Chứng minh rằng: BC = AD từ đó suy ra: BC = 2.IA
qua trung điểm I của đoạn thẳng BC. Kẻ đường thẳng vuông góc với BC. Trên đường thẳng đó lấy điểm E.
a) Chứng minh Ay là tia phân giác của góc BAC.
b) Trên tia đối của tia yA lấy điểm D sao cho yD=yA. Chứng minh AB=AC=CD=DB.
Cho tam giác ABC . Gọi M và N là trung điểm của AB , AC. Trên tia đối của tia MC lấy K sao cho MK = MC.
a) Chứng minh tam giác AMK=BMC
b) Trên tia đối của tia NB lấy I sao cho NI = NB . Chứng minh AI=BC
c) Chứng minh A là trung điểm của IK
Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.
cho góc nhọn xOy , c là điểm trên tia Ox , D là điểm trên tia Oy, sao cho OC=OD . gọi I là điểm trên tia phân giác Oz của góc xOy
sao cho OI > OC
a) chứng minh IC=ID và IO là phân giác của góc CID
b) gọi J là giao điểm của OI và CD chứng minh OI là đường trung trực của CD
* giúp mk vẽ hình và giả thiết kết luận nữa nhé