Cho tam giác ABC, tia Cx nằm giữa CA, CB. Vẽ đường tròn(O) có O thuộc AB (O khác A và B) và tiếp xúc với cạnh CB tại M, tiếp xúc với tia Cx tại N.
Chứng minh: a)Tứ giác MONC nội tiếp đường tròn
b)∠AON=∠ACN
c)Tia AO là tia phân giác của ∠MAN
Cho tam giác AHB có \(\widehat{H}=90^0,\widehat{A}=30^0,BH=4cm\). Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA)
a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB
b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
Cho tam giác MNC có ba góc nhọn ,MN>MC,nội tiếp đường tròn (O;R),hai đường cao MD,CF cắt nhau tại H.
a)CM tứ giác NDHF nội tiếp
b)Tia NH cắt MC tại E.Chứng minh HE.HN=HF.HC
c)Vẽ đường kính MK của (O).Chứng minh MK vuông góc với EF
Cần gấp phần c ạ;-;
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I
Cho đường tròn O bán kính R và 2 điểm A,B thuộc đường tròn sao cho góc AOB =60°. vẽ các tiếp tuyến tại A và B với đường tròn O cắt nhau tại S.
a. Chứng minh tứ giác OASB nội tiếp
b. Qua S kẻ cát tuyến SMN ( M nằm giữa S và N). chứng minh SM.SN=SB^2
Giúp mình vs
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
cho hai đường tròn (M;15) và (N;15) cùng tiếp xúc ngoài với đường tròn (O;15) sao cho O nằm giữa M và N. Tia đối của tia MO cắt đường tròn (M) tại A. vẽ dây AC của đường tròn (M) sao cho AC=12\(\sqrt{6}\)
AI VẼ HỘ MIK HÌNH VỚI HÌNH DẢK
QUÁ COMBA MIK KO ĐỦ 15cm =))