a) Xét tứ giác OASB có
\(\widehat{OAS}\) và \(\widehat{OBS}\) là hai góc đối
\(\widehat{OAS}+\widehat{OBS}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OASB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác OASB có
\(\widehat{OAS}\) và \(\widehat{OBS}\) là hai góc đối
\(\widehat{OAS}+\widehat{OBS}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OASB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Bài 1: Cho đường tròn (O;R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai C
a) Chứng minh tứ giác OASB nội tiếp
b) Chứng minh MA2 = MB.MC
c) Gọi N đối xứng với C qua M. Chứng minh góc CSA = góc MBS
d) Chứng minh NO là tia phân giác của góc ANB
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Helppp meeeeeee
Cho đường tròn tâm (O). Từ điểm S ở ngoài đường tròn (O) kẻ các tiếp tuyến SA và SB với (O) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.a/ Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.b/ Chứng minh IS là đường phân giác của góc AIB.c/ Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Từ điểm P nằm ngoài đường tròn (O;R), Vẽ cát tuyến PAB không qua O (A nằm giữa P và B), từ A và B vẽ hai tiếp tuyến của (O) cắt nhau tại M. Hạ MH vuông góc với OP. a/ Giả sử OP=2R. Tính độ dài OH . B/ MH cắt (O) tại N (H nằm giữa M và N). chứng minh PN là tiếp tuyến của (O).
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Cho đường tròn tâm O; bán kính R, đường kính AB. Lấy điểm M thuộc đường tròn khác hai điểm A,B . Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B lần lượt tại C và D .
a. Vẽ hình và chứng minh tam giác COD vuông.
b. Cho AC= R CÂN 3 . Tính độ dài BD theo R
Cho đường tròn (O;R) và dây CD có trung điểm H. Trên tia đối DC lấy S . Từ S vẽ 2 tiếp tuyến SA và SB đến (O) với A,B là tiếp điểm.
a) E là giao điểm SO và AB. F là giao điểm OH và AB. Chứng minh EFHS là tứ giác nội tiếp
b) OH.OF = OE.OS
c) Cho SO=3R, CD=R√3. Tính SF