Cho ΔABC ⊥ A , tia Cx nằm giữa hai tia CA và CB . Vẽ đường tròn (O) có O thuộc cạnh AB (O khác A , O khác B) và tiếp xúc với cạnh BC tại M , tiếp xúc với tia Cx tại N . Chứng minh :
1) tứ giác MONC nội tiếp đường tròn
2) góc AON = góc ACN
GIẢI ĐÚNG MK TICK . MK ĐANG CẦN GẤP .
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O;R), hai đường cao BE và CF cắt nhau tại H.
a) Cm tứ giác BCEF nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác BCEF.
b) Vẽ đường kính AI của (O), tia EF và CB cắt nhau tại M. Chứng minh H, K, I thẳng hàng và cm MB.MC=MF.ME
c) Tia MH cắt AK tại D, MA cắt (O) tại T. Cm T, H, K thẳng hàng
d) Giả sử BÂC=60°. Tính bán kính của đường tròn ngoại tiếp tứ giác DEFH theo R.
Cho tam giác AHB có \(\widehat{H}=90^0,\widehat{A}=30^0,BH=4cm\). Tia phân giác của góc B cắt AH tại O. Vẽ đường tròn (O; OH) và đường tròn (O; OA)
a) Chứng minh đường tròn (O; OH) tiếp xúc với cạnh AB
b) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên
cho tam giác ABC có ba góc nhọn (AB∠AC) nội tiếp đường tròn (o) vẽ tiếp tuyến tại A của đường tròn(o) cắt đường thẳng BC tại S tia phân giác của góc BAC cắt BC tại K và cắt đường tròn (o) tại E ,OE cắt dây BC tại I a/ chứng minh:SA2 =SB*SC b/chứng minh:OE⊥BC tại I d/vẽ tiếp tuyến SD của đường tròn (o) D là tiếp điểm D khác A . chứng minh:tứ giác SAOD nội tiếp được đường tròn và I
Cho tam giác ABC nội tiếp đường tròn (O) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH. Chứng minh rằng:
a) OM đi qua trung điểm của dây BC.
b) AM là tia phân giác của góc OAH.
\(Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF\)
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại I kẻ IE vuông góc với ad A : CM DC ie nội tiếp B: ca là tia phân giác của góc bce C: gọi K là tâm của đường tròn ngoại tiếp tam giác CIE,CM : kbd thẳng hàng
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh các tứ giác BDHF, BCEF nội tiếp
b) Chứng minh FC là tia phân giác của góc EFD
c) Hai đường thẳng EF và BC cắt nhau tại M . Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K . Chứng minh tam giác HIK cân