\(\left(d_1\right)y=\sqrt{m-1}x+3\)
\(\left(d_2\right)y=3x+1\)
\(\left(d_3\right)y=2x-3\)
Hoành độ giao điểm của 3 đường thẳng là nghiệm của phương trình:
\(3x+1=2x-3\Leftrightarrow x=-4\)
Thay \(x=-4\) vào phương trình đường thẳng \(\left(d_2\right)\), ta có:
\(y=3\left(-4\right)+1\Leftrightarrow y=-11\)
do đó điểm có toạ độ \(\left(-4;-11\right)\) thuộc đồ thị hàm số \(\left(d_1\right)\)
Thay \(x=-4,y=-11\) vào phương trình đường thẳng \(\left(d_1\right)\), ta có:
\(-11=-4\sqrt{m-1}+3\)
\(\Leftrightarrow-4\sqrt{m-1}=-14\)
\(\Leftrightarrow\sqrt{m-1}=3,5\)
\(\Leftrightarrow m=13,25\)