1. Xác định hàm số y=ax+b biết rằng đồ thị của nó // với đường thẳng y=2x-3 và đi qua điểm A(-3;\(\dfrac{1}{2}\))
* y=2x-3 // với đường thẳng y = -x+4 và đi qua điểm A(-3;1)
*y=2x-3 // với đường thẳng y=2x-3 và đi qua điểm A(\(\dfrac{1}{3};\dfrac{4}{3}\))
2. Tìm m để ba đường thẳng (d1) y=-x+6 và (d2) y=3x-6 và (d3)y = mx+m-5 đồng qui
Lời giải:
1)
Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên \(a=2\)
Mặt khác (d) đi qua \(A(-3;\frac{1}{2})\Rightarrow \frac{1}{2}=a.(-3)+b=2(-3)+b\)
\(\Leftrightarrow b=\frac{13}{2}\)
PTĐT cần tìm: \(y=2x+\frac{13}{2}\)
Ý 2: (d): $y=ax+b$ song song với đường thẳng \(y=-x+4\)
\(\Rightarrow a=-1\)
Mặt khác (d) đi qua điểm (-3;1) nên:
\(1=a(-3)+b=(-1)(-3)+b\)
\(\Leftrightarrow b=-2\)
PTĐT cần tìm: \(y=-x-2\)
Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng \(y=2x-3\Rightarrow a=2\)
Mặt khác (d) đi qua điểm \((\frac{1}{3}; \frac{4}{3})\) nên:
\(\frac{4}{3}=\frac{1}{3}a+b=\frac{1}{3}.2+b\Leftrightarrow b=\frac{2}{3}\)
Vậy PTĐT cần tìm là \(y=2x+\frac{2}{3}\)
2)
Gọi E là giao điểm của $(d_1), (d_2)$
Khi đó:
\(y_E=-x_E+6=3x_E-6\)
\(\Leftrightarrow x_E=3\Rightarrow y_E=3\)
Như vậy điểm E có tọa độ \((3;3)\)
Để 3 đường thẳng $(d_1),(d_2),(d_3)$ đồng quy thì \(E\in (d_3)\)
\(\Leftrightarrow 3=3m+m-5\Leftrightarrow 4m=8\Leftrightarrow m=2\)
Vậy m=2