Lời giải:
Gọi tọa độ điểm $N$ là $(-2a-1,a)$. Khi đó:
\(|NA-NB|=|\sqrt{(-2a-1-1)^2+(a-4)^2}-\sqrt{(-2a-1+2)^2+a^2}|\)
\(=|\sqrt{5a^2+20}-\sqrt{5a^2-4a+1}|\)
Đặt \(f(a)=|\sqrt{5a^2+20}-\sqrt{5a^2-4a+1}|\)
\(f'(a)=0\Leftrightarrow a=\frac{4}{9}\)
Lập BBT ta có $|NA-NB|_{\max}=f(\frac{4}{9})$. Vậy $N(\frac{-17}{9}, \frac{4}{9})$