Lời giải:
a)
Xét tứ giác $AEHF$ có tổng 2 góc đối \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\) nên $AEHF$ là tứ giác nội tiếp.
(đpcm)
Xét tứ giác $BFEC$ có \(\widehat{BFC}=90^0=\widehat{BEC}\) và 2 góc này cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
\(\Rightarrow \widehat{ECB}+\widehat{EFB}=180^0\)
Mà \(\widehat{AFE}+\widehat{EFB}=\widehat{AFB}=180^0\)
\(\Rightarrow \widehat{AFE}=\widehat{ECB}=\widehat{ACB}\) (đpcm)
b)
Theo phần a: \(\widehat{AFE}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{ADB}\) (góc nt cùng chắn cung $AB$)
\(\Rightarrow \widehat{AFE}=\widehat{ADB}\)
\(\Leftrightarrow 180^0-\widehat{IFB}=\widehat{IDB}\)
\(\Leftrightarrow 180^0=\widehat{IFB}+\widehat{IDB}\)
Như vậy tứ giác $BDIF$ có tổng 2 góc đối nhau bằng $180^0$ nên là tứ giác nội tiếp.