Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Phân giác góc B cắt AC tại D.
a/ Chứng minh ΔABD=ΔEBD và DE⊥BC.
b/ Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK=EC.
c/ Gọi M là trung điểm của KC. Chứng minh ba điểm B,D,M thẳng hàng.
Cho tan giác ABC có AB = AC , kẻ BD song song AC , CE song song AB (D thuộc AC , E thuộc AB ). Gọi O là giao điểm của BD và CE . Chứng minh :
a, BD =CE
b, Tam giác OEB = tam giác ODC
c, AO là tia phân giác cyar góc BAC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CE lấy E sao cho BD=CE, gọi I là gao điểm của DE và BC . Qua E vẽ đường thẳng song song AB cắt tại F
a, Chứng minh tam giác BDE=tam giác FEI
b,Chứng minh I là trung điểm của DE
Vẽ hình hộ mình với nha CẢM ƠN RẤT NHIỀU
Cho tam giác ABC cân tại A, đường cao AH. Kẻ HM vuông góc AB tại M; HN vuông góc AC tại N.
1. Chứng minh: BH = CH.
2. Chứng minh: AMN cân
3. Gọi P là giao điểm của MH với AC, Q là giao điểm của NH với AB, I là trung điểm của PQ. Chứng minh ba điểm N; H; I thẳng hàng.
Bài 1: Cho tam giác ABC có AB=AC. Lấy I là trung điểm BC
a) Chứng minh tam giác AIB=tam giác AIC
b) Chứng minh AI vuông góc với BC
c) Trên tia đối ủa tia IA lấy điểm K sao cho IA=IK. Chứng minh BK=AC
Bài 2: Cho tam giác ABC có góc BAC là góc nhọn, AB<AC. Vẽ tia Ax là phân giác của góc BAC, tia Ax cắt BD tại D. Trên tia AC lấy điểm E sao cho AE=AB
a) Chứng minh tam giác ADB=tam giác ADE
b)Chứng minh DB=DE
c) Biết góc BDA=65 độ. Tính số đo góc EDC
Bài 3: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA
a) Chứng minh tam giác BID=tam giác CIA
b) Chứng minh BD song song AC
c) Chứng minh BD vuông góc với AB
Bài 4: Cho góc xOy khác góc bẹt. Lấy các điểm A, B trên tia Ox sao cho OA<OB. Lấy các điểm C, D thuộc tia Oy sao cho OC=OA; OD=OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:
a) Tam giác OAD=tam giác OCB
b) BE=ED
c) OE là tia phân giác của góc xOy
Vẽ hình, ghi giả thiết+kết luận rồi làm bài cho mình nhanh nha
Cảm ơn mọi người trước ạ!
Cho ΔABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE.
a) CM: BE=CD
b) CM: DE//BC
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Cho tamn giác ABC có D , E lần lượt là trung điểm của các cạnh BC , AB. Gọi G là trọng tâm của tam giác ABC . Trên tia AG lấy điểm M sao cho G là trung điểm của AM
a.Cm GA = DM ; tam giác BDM = tam giác CBG
b. Tính BM theo CE
c.Cm AD < \(\dfrac{AB+AC}{2}\)
Giúp mk vs
Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK. Chứng minh tam giác ABC cân.
Bài 2: Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM = BN. Chứng tỏ tam giác ABC cân.
Bài 3: Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần lượt tại D và E. Chứng minh BD = CE.
Bài 4: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) TamgiácADEcân.
b) TamgiácBICcân.
c) IAlàtiaphângiáccủagócBIC.
Bài 5: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 6:
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
0
Bài 7: Cho tam giác ABC có góc A nhỏ hơn 90 . Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân
đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Bài 8: Cho đoạn thẳng AB = 7cm. Lấy điểm C thuộc đoạn thẳng AB sao cho AC = 2cm. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax và By cùng vuông góc với AB. Lấy điểm D thuộc tia Ax, điểm E thuộc tia By sao cho: AD = 10 cm, BE = 1 cm.
a) Tính độ dài các đoạn thẳng DC, CE.
b) Chứng minh rằng: DC CE