\(B=\left(4x^2+3y\right)\left(4y^2+3x\right)+25xy\)
\(\Leftrightarrow B=16x^2y^2+12\left(x^3+y^3\right)+9xy+25xy=16x^2y^2+12\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+34xy=16t^2-2t+12\) Với t = xy
\(B=\left(4t-\dfrac{1}{4}\right)^2+\dfrac{191}{16}\)
Vì: \(0< t=xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{1}{4}\Rightarrow\dfrac{-1}{4}< 4t-\dfrac{1}{4}\le\dfrac{3}{4}\)
Vậy \(\dfrac{191}{16}\le B\le\dfrac{25}{2}\)