\(S=16x^2y^2+12\left(x^3+y^3\right)+9xy+25xy\)
\(=16x^2y^2+12\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+34xy\)
\(=16x^2y^2+12-36xy+34xy\)
\(=16x^2y^2-2xy+12\)
\(S=16x^2y^2-2xy+12=16x^2y^2-2xy+\frac{1}{16}+\frac{191}{16}=\left(4xy-\frac{1}{4}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
\(\Rightarrow MinS=\frac{191}{16}\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4xy-\frac{1}{4}=0\\x,y\ge0\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(\frac{2\pm\sqrt{3}}{4};\frac{2\mp\sqrt{3}}{4}\right)\)
\(S=16x^2y^2-2xy+12=2xy\left(8xy-1\right)+12\le2.\frac{\left(x+y\right)^2}{4}\left[8.\frac{\left(x+y\right)^2}{4}-1\right]+12=\frac{25}{2}\)
\(\Rightarrow MinS=\frac{25}{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=y\\x,y\ge0\end{matrix}\right.\Leftrightarrow x=y=\frac{1}{2}\)