Áp dụng BĐT cosi:
`a^2+25>=10a`
`b^2+9>=6b`
`c^2+4>=4c`
`=>a^2+b^2+c^2+38>=10a+6b+4c`
`<=>a^2+b^2+c^2+38>=4(a+b+c)+2(a+b)+4a`
`<=>a^2+b^2+c^2+38>=10.4+2.8+4.5=76`
`<=>a^2+b^2+c^2>=38(đpcm)`
Dấu "=" `<=>a=5,b=3,c=2`
Áp dụng BĐT cosi:
`a^2+25>=10a`
`b^2+9>=6b`
`c^2+4>=4c`
`=>a^2+b^2+c^2+38>=10a+6b+4c`
`<=>a^2+b^2+c^2+38>=4(a+b+c)+2(a+b)+4a`
`<=>a^2+b^2+c^2+38>=10.4+2.8+4.5=76`
`<=>a^2+b^2+c^2>=38(đpcm)`
Dấu "=" `<=>a=5,b=3,c=2`
Chứng minh tam giác ABC thỏa mãn \(\left\{{}\begin{matrix}a^2=b^2+c^2-bc\\b^2=a^2+c^2-ac\end{matrix}\right.\)
thì là tam giác đều
Cho a,b,x,y là các số thực thỏa mãn \(\left\{{}\begin{matrix}x\in\left(0;a\right),y\in\left(0;b\right)\\a^2+y^2=b^2+x^2=2\left(ã+by\right)\end{matrix}\right.\)
Chứng minh rằng : ab + xy = 2(ay+bx)
Tìm hai số a và b
a. \(\left\{{}\begin{matrix}a+b=\frac{-1}{2}ab\\a^2+b^2=5ab\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\frac{1}{a}+\frac{1}{b}=\frac{5}{6}\\a^3+b^3=35\end{matrix}\right.\)
các bạn có thể giải ci tiết ra giúp mình đc k ạ
cảm ơn các bạn
Cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+b^2+c^2=1\end{matrix}\right.\). CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). CMR: \(\frac{a+b}{1+a}+\frac{b+c}{1+b}+\frac{c+a}{1+c}\ge ab+bc+ca\)
cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). chứng minh:\(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\)
a)\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x-my=1+m^2\\mx+y=1+m^2\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\)
Bài 4 Đoán nghiệm của các hệ phương trình sau :
a)\(\left\{{}\begin{matrix}y=3-4x\\\\y=3x-1\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}3y=2x\\\\2y=-3x\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x-y=1\\\\x-2y=-1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\frac{1}{3}x-y=\frac{2}{3}\\\\x-3y=2\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}4x-4y=2\\\\-2x+2y=-1\end{matrix}\right.\)
giải hệ phương trình
a )\(\left\{{}\begin{matrix}x+2y=3\\x^2+y^2=2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x-y=1\\3x^2+4y^2=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x+2y\\x^2+xy=3\end{matrix}\right.\)
>< giúp e với ạ