Cho các số thực a,b,c thỏa mãn
\(a^2+b^2+c^2=2\). Chứng minh rằng:
a + b + c ≤ 2 + abc
Cho các số thực không âm a,b,c thỏa mãn
\(a^2+b^2+c^2=8\). Chứng minh rằng:
\(a+b+c\le2+abc\)
Cho các số thực dương a, b, c. Chứng minh rằng:\(\left(a^2+3\right)\)\(\left(b^2+3\right)\)\(\left(c^2+3\right)\)\(\ge4\left(a+b+c+1\right)^2\)
Cho a,b,c là các số khác 0 thỏa a+b+c=0.Cmr:
\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)^2}=\dfrac{3}{4}\)
Cho a,b,c là các số thực thoả mãn \(^{a^2+b^2+c^2\le12}\)
Tìm GTLN của biểu thức: S=\(4\left(a^3+b^3+c^3\right)-\left(a^4+b^4+c^4\right)\)
cho a, b duong thoan man a+b=c. Chung minh rang \(\sqrt[4]{a^3}+\sqrt[4]{b^3}>\sqrt[4]{c^3}\)
Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)
a) Xác định P(x)
b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)
Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).
Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4)
Bài 4: Cho f(1) =1; f (m+n) = f(m) +f(n) +mn ( với m,n nguyên dương)
a) CM: f(k) – f(k-1) =k
b) Tính f(10); f(2007); f(2008)
Bài 5: Cho a+b+c=0 và ab + bc + ac =0. Tính giá trị biểu thức: \(M=\left(a-2005\right)^{2006}-\left(b-2005\right)^{2006}-\left(c+2005\right)^{2006}\)
Bài 6: Cho \(a>b>0\) thỏa mãn \(3a^2+3b^2=10ab\). Tính giá trị biểu thức: \(P=\dfrac{a-b}{a+b}\)
Mình biết lần này thực sự mình hỏi nhiều nhưng vẫn mong các bạn giúp đỡ, mình sẽ tick cho bạn nào trả lời được trước 16/8/2017 nhé, 1 bài thôi cũng tick, cảm ơn các bạn nhiều, giúp mình nhé !!!
Giải các pt sau:
a, A=\(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
b, B=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c, C=(3.\(\sqrt{2}\) +\(\sqrt{6}\) ).\(\sqrt{6-3\sqrt{3}}\)
Cho \(a,b,c\in\left[0;2\right]\)
C/m : \(\sum\dfrac{1}{\left(a-b\right)^2}\ge\dfrac{9}{4}\)