Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
bảo minh

Cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của : \(\frac{x+y}{xyz}\)

 

Hoàng Lê Bảo Ngọc
19 tháng 8 2016 lúc 13:45

Ta có : \(1=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\) 

Mặt khác : \(\left(x+y\right)^2\ge4xy\)

Nhân hai bđt trên theo vế được \(\left(x+y\right)^2\ge16xyz\left(x+y\right)\)

\(\Rightarrow x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Vậy giá trị nhỏ nhất của biểu thức bằng 16 \(\Leftrightarrow\begin{cases}x=y\\x+y=z\\x+y+z=1\end{cases}\)

\(\Leftrightarrow\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}\)

Lê Nguyên Hạo
19 tháng 8 2016 lúc 13:45

Có : \(x+y+z=\left(x+y\right)+z=1\)

Áp dụng BĐT Cauchy với hai số dương x + y với z có:

\(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

Hay: \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\rightarrow\left(x+y>0\right)\)

Có : \(\left(x+y\right)^2\ge4xy\)

\(\Rightarrow x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu "=" xãy ra khi x = y,x + y + z = 1 , x+y/xyz = 16

Giải ra ta được  x = y = 1/4 , z = 1/2


Các câu hỏi tương tự
bảo minh
Xem chi tiết
phan thị minh anh
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Hà Phương
Xem chi tiết
Trần Thị Duyên
Xem chi tiết
Tuấn Anh Nguyễn
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết