Lời giải:
Ta viết lại biểu thức vế trái:
\(\text{VT}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{c}+\frac{a}{b}\right)+\left(\frac{b}{c}+\frac{b}{a}\right)+\left(\frac{c}{a}+\frac{c}{b}\right)\)
\(=a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)\)
Áp dụng BĐT Svac-xơ: \(\frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}; \frac{1}{c}+\frac{1}{a}\geq \frac{4}{c+a}; \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\)
Do đó:
\(\text{VT}\geq a.\frac{4}{b+c}+b.\frac{4}{c+a}+c.\frac{4}{a+b}=4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$