cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
Cho a,b ,c là các số thực thỏa mãn (a-b)(a-c)=1 b khác c. Chứng minh
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge4\)
cho a,b,c là số thực dương, a+b+c=1. tìm GTNN của biểu thức
\(\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(b+a\right)^2+ba}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(a+c\right)^2+ac}}\)
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right)+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)
1. Cho a,b,c là những số hữu tỉ khác 0, a=b+c
CM: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là 1 số hữu tỉ
2. Cho a,b,c là 3 số hữu tỉ khác nhau đôi một
CM: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}}\) là một số hữu tỉ
3. Cho a,b,c là 3 số hữu tỉ thỏa mãn ĐK ab+bc+ca=1
CM: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ
4. Rút gọn các biểu thức
a) \(\sqrt{4-4a+a^2}-2a\)
b)\(2b-\frac{\sqrt{b^2-4b+4}}{b-2}\)
c) \(\frac{\sqrt{4x^2-4x+1}}{2x-1}-1\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)