Áp dụng BĐT Cô - Si cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab=2\) ( Đẳng thức xảy ra khi a = b = 1 )
Do đó : \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\) ≥ \(2\left(a+b+1\right)+\dfrac{4}{a+b}\)
⇔ \(A\) ≥ \(2+2\left(a+b\right)+\dfrac{4}{a+b}\)
⇔ \(A\) ≥ \(2+\left(a+b\right)+\left[\left(a+b\right)+\dfrac{4}{a+b}\right]\)
⇔ \(A\) ≥ \(2+2\sqrt{ab}+2\sqrt{\left(a+b\right).\dfrac{4}{a+b}}=2+2+2\sqrt{4}=8\)
⇒ \(A_{Min}=8\) ⇔ a = b = 1