\(a^2+b^2+ab< 1\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b\)
\(\Leftrightarrow a^3-b^3< a-b=a^3+b^3\)
\(\Leftrightarrow a^3-b^3-a^3-b^3< 0\)
\(\Leftrightarrow-2b^3< 0\) (đúng)
\(a^2+b^2+ab< 1\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b\)
\(\Leftrightarrow a^3-b^3< a-b=a^3+b^3\)
\(\Leftrightarrow a^3-b^3-a^3-b^3< 0\)
\(\Leftrightarrow-2b^3< 0\) (đúng)
Cho 3 số a, b, c thoả mãn a+b+c=10. Chứng minh a^2 + b^2 +c^2 lớn hơn hoặc bằng 100/3.
BT1: Cho a,b,c>0. CMR: a2(b+c-a)+b2(c+a-b)+c2(a+b-c)=<3abc
BT2: Cho a,b,c>0. CMR\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}>=a+b+c\)
BT3: Cho a,b,c>0 thỏa mãn: abc=ab+bc+ca. Chứng minh:
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}=< \dfrac{3}{16}\)
GIÚP MÌNH VỚI. MÌNH ĐANG CẦN GẤP.
cho a,b,c là các số dương thỏa mãn: a+b+c=1
cmr :\(\dfrac{ab+c}{c+1}+\dfrac{bc+a}{a+1}+\dfrac{ac+b}{b+1}\le1\)
Cho a, b, c là các số thực dương. Tìm GTNN của biểu thức:
P = \(\frac{1+a^3}{1+ab^2}\)+\(\frac{1+b^3}{1+bc^2}\)+\(\frac{1+c^3}{1+ca^2}\)
Cho a,b,c là các số dương. Chứng minh:
\(\frac{a}{a+b}+\frac{b}{c+b}+\frac{c}{c+a}\ge\frac{3}{2}\)
Cho các số thực a,b,c. CMR: \(\dfrac{a^2}{4}+b^2+c^{^{ }2}\ge ab-ac+2bc\)
Cho a,b,c,d,e là các số thực chứng minh rằng:
a) a2+\(\dfrac{b^2}{4}\)>= ab
b)a2+b2+1>=ab+a+b
c)a2+b2+c2+d2+e2>=a(b+c+d+e)
d) \(\dfrac{a^2+b^2}{2}>=\left(\dfrac{a+b}{2}\right)\)
e) \(\dfrac{a^2+b^2+c^2}{3}>=\left(\dfrac{a+b+c}{3}\right)\)
Cho a,b,c,d là các số dương. CMR:\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
a)a3+b3≥ ab(a+b)(a,b>0)
b)a4+b4≥ a3b+ab3
c)(1+a)(1+b) ≥ (1+\(\sqrt{ab}\))2
d)\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\) ≥ ab +bc+ac(a,b>0)