Cho hệ phương trình\(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) .
Chứng minh rằng với mọi a thì hệ có nghiệm duy nhất. Tìm nghiệm đó.
Cho 2 số a, c thõa mãn ac < 0. Xét hai pt \(\left\{{}\begin{matrix}ax^2+bx+c=0\left(1\right)\\cx^2+bx+a=0\left(2\right)\end{matrix}\right.\)
Gọi \(\alpha\)và \(\beta\) là hai nghiệm lớn nhất của (1) và (2). CMR: \(\alpha+\beta\ge2\)
1) Tìm các giá trị của m để phương trình\(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\)có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>1; y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
Xác định m để hệ có nghiệm duy nhất thỏa mãn điều kiện x + y > 0
Giúp mình các bài sau với:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}\text{3x+(m^2+1)y=5m−10}\\−9x+(−3m^2−3)y=−15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.
Giúp mình các bài sau:
Bài 1:Cho hệ phương trình\(\left\{{}\begin{matrix}x+y=1\\ax+2y=0\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số a để hệ vô nghiệm.
Bài 2:Cho hệ phương trình\(\left\{{}\begin{matrix}2x-y=m\\mx+\sqrt{2}y=m\end{matrix}\right.\) .Tìm tất cả các giá trị của tham số m để hệ có vô số nghiệm.
Bài 3:Cho hệ phương trình\(\left\{{}\begin{matrix}3x+\left(m^2+1\right)y=5m-10\\-9x+\left(-3m^2-3\right)y=-15m+30\end{matrix}\right.\).Chứng minh rằng hệ có vô số nghiệm với mọi giá trị của tham số m.
Cho hệ phương trình\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\)
b) Chứng tỏ rằng hệ phương trình luôn luôn có nghiệm duy nhất với mọi m
d) Tìm giá trị nguyên của m để hai đường thẳng của hệ cắt nhau tại một điểm nằm trong góc phần tư thứ IV trên mặt phẳng tọa độ Oxy
e) Với trị nguyên nào của m để hệ có nghiệm (x ; y) thỏa mãn x + y = 7
Mình đang cần gấp, nhờ các bạn!!!
Cho hpt\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
a) Giải hệ với m= -1
b) Tìm m để hệ có nghiệm duy nhất thỏa mãn điều kiện x>0 và y>0
1.Cho pt 2x+3y=300.Pt có bao nhiêu nghiệm nguyên dương?
2.Cho hệ pt \(\left\{{}\begin{matrix}ax+y=3\left(1\right)\\x-2y=2\left(2\right)\end{matrix}\right.\).Gọi D1,D2 lần lượt là các đường thẳng có pt (1) và (2).Tìm a biết rằng có điểm A trên D1 và điểm B trên D2 t/m \(\left\{{}\begin{matrix}x_A=x_B\ne0\\y_A+3y_B=0\end{matrix}\right.\)
3.Cho hệ pt \(\left\{{}\begin{matrix}\left(m+1\right)x+8y=4m\\mx+\left(m+3\right)y=3m-1\end{matrix}\right.\).Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) vs x,y có giá trị nguyên